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This paper is devoted to the development and evaluation of wheels-off time estimation 

and selection of airports without advanced automation that could benefit from wheels-off 

time estimation. After eliminating non-hub, small-hub, and airports with Airport Surface 

Detection Equipment Model-X, 29 airports were selected for further analysis. Using taxi-out 

delay, traffic management initiative delay counts and commercial operation counts as 

metrics in a multiple-metric K-Means method, these airports were organized into three 

groups. San Jose International, Cleveland-Hopkins International and San Francisco 

International are recommended for development and testing of wheels-off time estimation 

methods as they are suitable representatives of these three groups. The second part of the 

paper is devoted to wheels-off time estimation using a simulation procedure that uses 

kinematic models of different types of aircraft and a node-link graph to simulate surface 

traffic. The central idea is to integrate the aircraft equations of motion along the path in the 

node-link graph while complying with separation constraints and rules for waiting to cross 

intersections and active runways. While the intent was to apply the wheels-off estimation 

method to San Jose, the geometry data and the surveillance data were not received in time 

for this study. Therefore, modeling, simulation and tests were done with Dallas-Fort Worth 

traffic for which the needed data were available. Of the two approaches described in the 

paper, the data-driven approach, which uses historical taxi-times, can be readily applied to 

airports like San Jose, Cleveland and San Francisco.            

I. Introduction 

his paper is motivated by the need for predicting wheels-off time at airports where advanced automation 

systems, such as the Surface Decision Support System (SDSS), that depend on surveillance information derived 

from Airport Surface Detection Equipment Model-X (ASDE-X) type systems will not be available. At airports with 

SDSS type systems, aircraft surface movement will be scheduled, which will reduce runway entry time and wheels-

off time uncertainty. Additionally, it will be possible to generate better estimates by using surveillance information. 

For example, the taxiway entry time of an aircraft waiting at the spot can be predicted more accurately by predicting 

the trajectories of aircraft in the movement areas starting from the current locations from surveillance data. At less 

equipped airports, wheels-off time will have to be estimated under the current day conditions with uncertainties 

associated with aircraft movement in the ramp-area and in the movement-area. Wheels-off time predictions are 

needed for coordinating departure release times with downstream facilities to meet flow management restrictions 

imposed by them. These restrictions are imposed for ensuring adequate separation between aircraft, creating orderly 

flows in terminal areas, and protecting sectors and airports from being overwhelmed by demand. Two of the 

commonly used restrictions that could benefit from wheels-off time estimation are Call For Release (CFR) and 

Expect Departure Clearance Time (EDCT). Accuracy requirement for CFR is actual wheels-off time within two-

minutes early to one-minute late window with respect to the estimated wheels-off time. The requirement for EDCT 

is plus-minus five minutes. 

 In the first part of the paper, the initial set of 77 major U. S. airports in the Aviation System Performance Metrics 

(ASPM) database is reduced to the set of 29 airports after eliminating ASDE-X, small-hub and non-hub airports. 

This reduced set contains 27 medium-hub airports and two large-hub airports. Nine of these airports are being 

considered for surface surveillance systems. Currently, single radar-based Low Cost Ground Surveillance (LCGS) is 
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being tested at San Jose International airport. Eight other airports including San Francisco International and 

Cleveland-Hopkins International will receive Automatic Dependent Surveillance-Broadcast (ADS-B) based Airport 

Surface Surveillance Capability (ASSC). These 29 airports are classified into groups using a K-Means method. The 

number of groups are then reduced to three based on the group IDs derived from K-Means classification. Reference 

1 describes a similar study in which 21 large-hub airports were analyzed to determine suitable candidates for testing 

of NASA’s Spot and Runway Departure Advisor (SARDA), which is discussed in Ref. 2, based on taxi-out delays, 

passenger enplanements, total operations and cargo operations.     

 The second part of the paper is devoted to wheels-off time estimation. The earlier study in Ref. 3 examined 

wheels-off time estimation using a neural network with metrics derived from historical surface surveillance data and 

ASPM database. That study analyzed data from Dallas-Fort Worth and showed that gate to runway distance is the 

most significant factor for wheels-off prediction. Other significant factors were 1) average taxi-out delay in previous 

15-minutes, 2) number of departures on surface at actual gate departure time, 3) average taxi-out delay of departures 

on same runway in previous 15-minutes, 4) average taxi-out delay of departures to the same fix in the previous 15-

minutes, 5) wind angle and 6) airport arrival rate set by air traffic control. Results showed that wheels-off time could 

be predicted within two-minutes early to one-minute late window 59% of the time. In this paper, two approaches are 

described- a simulation-based approaches and a data-driven approach. The first method is purely model-based. 

Ramp-area and movement-area speeds are specified in the simulation. This method does not require surveillance 

information. The second method, data-driven method, uses gate and spot to queue-area, runway and wheels-off taxi 

-times derived from historical surveillance data to estimate queue-area and runway entry times and wheels-off time. 

Queue-area and runway entry times were estimated in addition to wheels-off time to determine loss of estimation 

accuracy in these regions of surface movement. The proposed methods assume that gate pushback time or spot 

crossing time and taxiway path of the flight specified by taxiway clearance are known. Aircraft position is obtained 

as a function of time by integrating the equations of motion along the specified path in the simulation-based method. 

Possible sources of errors in surface trajectory prediction are the differences in actual and assumed taxi-speed, 

surface winds and visibility, congestion caused by other aircraft, and takeoff and landing demand. Six days of 

August 2011 Dallas-Fort Worth surface data were processed to generate queue-area and runway entry times and 

wheels-off time using the two methods. These estimates were then compared against those derived by processing the 

actual surveillance data to determine temporal errors and entry sequence errors.  

 Section II describes the metrics and method for selection of non-ASDE-X airports. Section III describes the 

simulation-based method and the data-driven method for estimating queue-area entry time, runway entry time and 

wheels-off time. Queue-area entry time, runway entry time and wheels-off time errors, and sequence errors with 

respect to surveillance derived values are presented in Section IV. Conclusions and future work are discussed in 

Section V.  A listing of the 77 ASPM airports is provided in the Appendix. Numerical values of the metrics used for 

selecting airports are also listed in a table in the Appendix.  

II. Selection of Non-ASDE-X Airports  

In this section, the sources of taxi-out delay, taxi-out time, number of commercial operations, traffic flow 

management initiative caused delay counts, passenger enplanement counts, type of hub airport and type of surface 

surveillance equipment at the airport used for determining the non-ASDE-X airports in this study are described.  

Most of the data were derived from the Federal Aviation Administration’s (FAA) Aviation System Performance 

Metrics (ASPM) and Operations Network (OPSNET) databases containing historical traffic counts and delay 

statistics. Data were also derived from the Terminal Area Forecast (TAF) Summary for fiscal years 2011-2040 

report. The 77 airports included in the ASPM and OPSNET databases are listed in Table A-1 in the Appendix. These 

airports are referred to by their airport code in the rest of the document. 

The first report obtained from the ASPM database is the “Analysis By Airport Report (compared to flight plan)” 

for calendar year 2011. This report includes average taxi-out time and average taxi-out delay for each of the 77 

major U. S. airports. Taxi-out time is the difference between the actual wheels-off time and the actual gate-out time. 

Taxi-out delay is difference between the taxi-out time and the unimpeded taxi-out time. Taxi-out times and delays 

are in minutes. Only data from itinerant flights to or from the ASPM 77 airports or operated by one of the ASPM 29 

carriers are included. Itinerant flights are those that land at an airport, arriving from outside the airport area, or 

depart an airport and leave the airport area. Data on flights by ASPM carriers to international and domestic non-

ASPM airports are also kept in the ASPM database. General aviation and military flights are excluded. Table A-2 in 

the Appendix lists the average taxi-out delay and the taxi-out delay ratio derived from this report. The average taxi-

out delay ratio is defined as the ratio of average taxi-out delay to average taxi-out time.  
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Figure 1. Correlation between commercial operations 

and passenger enplanements. 

The second report, “OPSNET: Airport Operations: Standard Report” for calendar year 2011 is obtained from the 

OPSNET database. This same report can also be obtained from the FAA’s Air Traffic Activity System (ATADS) 

database. This report contains air-carrier, air-taxi, general aviation and military itinerant operations, and civil and 

military local operations. Local operations are performed by aircraft that remain in the local traffic pattern, execute 

simulated instrument approaches or low passes at the airport, and fly to or from the airport and a designated practice 

area within a 20−mile radius of the tower. Airport operations include all arrivals and departures at the airport; 

overflights are not included. OPSNET defines air-carrier as aircraft with a seating capacity of more than 60 seats or 

a maximum payload capacity of more than 18,000 pounds carrying passengers or cargo for hire or compensation and 

air-taxi as aircraft with a seating capacity of 60 or less or a maximum payload capacity of 18,000 pounds carrying 

passengers or cargo for hire or compensation. Air-carrier includes U. S. and foreign flagged carriers. Table A-2 in 

the Appendix lists the sum of itinerant air-carrier and air-taxi operations (commercial operations as defined by TAF 

report) for each of the 77 major U. S. airports based on the 2011 report.  

The third report, “OPSNET: Delays: Delay Types Report” was obtained from OPSNET database to get TMI-

from delay counts for calendar year 2011. These counts are also listed in Table A-2 in the Appendix. OPSNET 

defines TMI-from delays as traffic management initiative delays from a national or local traffic management 

initiative as experienced by aircraft departing from the selected facilities. These initiatives include departure spacing 

(DSP), enroute spacing (ESP), arrival spacing (ASP), miles-in-trail (MIT), minutes-in-trail (MINIT), Expect 

Departure Clearance Time (EDCT), Ground Stop (GS), and Severe Weather Avoidance Plan (SWAP). It should be 

understood that these delays are charged to facilities asking for the delays and not to the ones providing the delays. 

For example, 11,132 aircraft were delayed at Atlanta (see ATL TMI-from delay counts in Table A-2 in the 

Appendix) to comply with traffic management initiatives of other facilities. From this study’s perspective, TMI-

from delay counts (number of aircraft experiencing TMI-from delays) indicates instances when improved wheels-off 

time estimate at the departure airport could help meet metering and spacing constraints imposed by others.    

The fourth report derived from OPSNET database, “OPSNET: Delays: EDCT/GS/TMI By Cause Report” 

provided the TMI-to weather delay counts and TMI-to volume delay counts. TMI-to delays is defined as delays 

resulting from a national or local traffic management initiative reported in OPSNET and charged to the facility that 

is the originating cause of the restriction. These initiatives also include DSP, ESP, ASP, MIT, MINIT, EDCT, GS, 

and SWAP. These delays may be experienced by aircraft at another facility, but are charged to the causal facility. 

For example, 5,561 aircraft were delayed at other airports due to weather caused restrictions imposed by Atlanta as 

listed in Table A-2 in the Appendix. TMI-to volume delays are caused by restrictions imposed for moderating the 

traffic demand. In addition to weather and volume delay counts and minutes, the report contains delays due to 

equipment, runway and other causes.  

Passenger enplanements data listed in Table A-2 in 

the Appendix were obtained from the main FAA website 

in the “Passenger Boarding and All-Cargo Data” Section 

(see Ref. 4). The main source of enplanement statistics is 

the U. S. Department of Transportation (DOT). 

Scheduled and nonscheduled U. S. certificated air-

carriers, commuter air-carriers, and small certificated air-

carriers submit data to DOT on Form 41 Schedule T-100. 

Foreign flag air carriers submit data to DOT on Form 41 

Schedule T-100(f). In addition, an annual survey of air-

taxi/commercial operators, who report their nonscheduled 

activity on FAA Form 1800-31, is conducted by the FAA. 

As one would expect, passenger enplanement is highly 

correlated to the number of commercial operations. The 

value of the correlation coefficient (also known as 

Pearson’s correlation coefficient and Pearson’s product-

moment correlation coefficient) was found to be 96.7% 

and the p-value was found to be zero to six decimal 

places, which indicates highly significant correlation. Figure 1 shows the plot of passenger enplanements as a 

function of commercial operations based on the data in Table A-2 in the Appendix. The dotted line indicates a linear 

fit between enplanements and commercial operations. The coefficient of determination (R
2
 value) was found to be 

0.935. A closer look at enplanement data and commercial operations data in Table A-2 in the Appendix indicates 

some data inconsistencies. For example, 3,634 air-carrier and air-taxi operations were conducted at Oxnard, CA 

(OXR), but the number of enplanements is just 3. Similarly, numbers look very low for GYY, TEB, and VNY. The 
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Figure 2. ASPM 77 airports categorized as large-

hub, medium-hub, small-hub and non-

hub airports. 

following response was received from the FAA when asked for an explanation for the discrepancy. The enplanement 

numbers posted by the FAA include all revenue passengers that boarded a flight conducted by a large certificated, 

commuter, or foreign air-carrier.  They also include the enplanements for on demand air-taxi operators. However, 

these small operators are not required to report their passenger enplanements to the FAA.  So while FAA has some 

data, it can vary from year to year based on whether the operators voluntarily report their passenger activity.  This 

impacts the non-primary airports like TEB and VNY that serve corporate and business flights which may have a 

significant number of Part 135 on demand operations.   
FAA facility pay level data listed in Table A-2 in the Appendix were obtained from the “OPSNET: Facility 

Information: Detail Report” derived from the OPSNET database. Reference 5 provides a complete description of the 

formula for pay setting. The facility pay level varies between “null” and 12. Null level is indicated by a zero in the 

table. Since facility pay level is based on a formula that considers both the number of operations and complexity 

factors such as, tower with or without radar, performance characteristics of aircraft using the airport, runway and 

taxiway layout, proximity  to other airports, military operations and terrain, it can be used as a metric for 

categorizing airports. Correlation between the number of operations and the levels given in Table A-2 was found to 

be 68.6%. The correlation improved to 78% with 0 levels excluded. In both these instances, the correlations were 

determined to be significant with p-value of zero up to six decimal places. It is thus seen that number of operations 

dominates the formula for pay setting.  

ASPM and OPSNET databases provide operational statistics on Core airports, Operational Evolution Partnership 

(OEP 35) airports, 45 airports tracked in OPSNET (OPSNET 45) and the 77 airports tracked in ASPM. Core airports 

are the 30 busiest commercial U. S. airports that serve as hubs for airline operations at major metropolitan areas. 

OEP 35 airports are commercial U.S. airports with significant activity. These airports serve major metropolitan areas 

and also serve as hubs for airline operations. More than 70 percent of passengers move through these airports. The 

Venn-diagram in Fig. 2 shows the airport codes of the Core, OEP 35, OPSNET 45 and ASPM 77 airports. The 

rectangular box shows all the 77 ASPM airports. The 30 Core airports are enclosed in the innermost circle with thick 

solid boundary. All the Core airports and five additional airports enclosed in the circle with dotted line boundary 

form the OEP 35 airport set. OPSNET 45 airports are enclosed in the largest circle with a thin solid boundary. 

Observe that OPSNET 45 set contains all the Core and OEP 35 airports except Honolulu International airport 

(HNL). The 31 airports outside the circles only belong to ASPM 77.  

The airports in Fig. 2 were identified as large-hub 

airports, medium-hub airports, small-hub airports and 

non-hub airports based on their designation in Ref. 6. A 

large-hub airport is defined as an airport with 1% or more 

of total U. S. passenger enplanements. A medium-hub 

airport is defined as an airport with 0.25% to 0.99% of 

total U. S. passenger enplanements. An airport with 

0.05% to 0.249% of total U. S. passenger enplanements is 

categorized as a small-hub airport. Finally, an airport 

with less than 0.05% of total U. S. passenger 

enplanements is termed a non-hub airport. All Core 

airports other than Memphis International airport (MEM) 

are large-hub airports. These 29 airport codes inside the 

smallest circle are shown in red without a superscript. 

The 34 medium-hub and 6 non-hub airports are indicated 

in black and magenta, and by “m”, and “*” superscripts, 

respectively. The airport codes of 8 small-hub airports are 

in blue and underlined. 

Figure 3 shows the airport codes of ASDE-X airports, 

Low Cost Ground Surveillance (LCGS) airports and Airport Surface Surveillance Capability (ASSC) airports. List 

of names of airports with ASDE-X, LCGS and ASSC were obtained from Refs. 7-9. LCGS is based on single 

surface movement radar concept. FAA is currently evaluating LCGS at Spokane (GEG), Manchester (MHT), San 

Jose (SJC), Reno (RNO) and Long Beach (LGB). Airport codes of LCGS airports are indicated in blue with a “*” 

superscript. As opposed to ASDE-X that uses radar, multilateration and Automatic Dependent Surveillance-

Broadcast (ADS-B), ASSC derives data from just multilateration and ADS-B. FAA expects ASSC to begin tracking 

transponder-equipped aircraft and ADS-B equipped ground vehicles by 2017 at Portland (PDX), Anchorage (ANC), 

Kansas City (MCI), New Orleans (MSY), Pittsburgh (PIT), San Francisco (SFO), Cincinnati (CVG), Cleveland 

(CLE) and Andrews Air Force Base. ASSC airport codes in green are underlined. Airports without a surface 
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Figure 4. Airports remaining after removing ASDE-

X airports, and small-hub and non-hub 

airports.  

 
 

Figure 3. Airports with ASDE-X, LCGS and ASSC 

surface surveillance systems, and airports 

without surface surveillance systems. 

surveillance system are indicated with airport codes in black with an “n” superscript. The remaining 35 airports in 

red are ASDE-X airports.  

After removing all the ASDE-X airports, small-hub and non-hub airports from Fig. 3, the remaining 29 airports 

shown in Fig. 4 are considered as suitable candidates for further analysis. San Francisco and Tampa are the only two 

large-hub airports remaining in this set. The other 27 are medium-hub airports. Nine airports in this set will either 

have LCGS or ASSC systems for surface surveillance. Since surveillance data can be used for comparing estimates 

against reality, these airports could be considered for near term development and testing of wheels-off time 

estimation methods.      

  To identify airports that could benefit from wheels-

off time estimation, the important metrics are, 1) taxi-out 

delay, 2) TMI-from delay counts and 3) number of 

commercial operations. Without a suitable means for 

accounting for taxiway delays due to interactions between 

arriving and departing aircraft, one could resort to 

estimating wheels-off time based on the single value of 

taxi-time for the airport from ASPM database. This 

however, would lead to larger wheels-off time prediction 

errors at airports with larger taxi-out delays. Thus, 

airports with larger taxi-out delays can be expected to 

benefit more by being able to reduce larger wheels-off 

time prediction errors by employing a wheels-off time 

estimation method. Airports with TMI-from delays have 

to ensure that the affected aircraft depart at times 

coordinated with downstream facilities so that the 

restrictions imposed by them are met. Airports with 

higher TMI-from delay counts have to depart more 

aircraft on time; therefore, wheels-off time estimate can 

be expected to have a greater impact at these airports. 

Finally, improved predictability of taxi-time and wheels-

off time has the potential of improving planning and 

scheduling for greater surface movement efficiency at 

busier airports, the ones with large number of commercial 

operations.  

In addition to estimating taxi-out time, gate departure 

time needs to be known or estimated for wheels-off time 

prediction since wheels-off time is obtained by adding the 

taxi-out time to the gate departure time. Unfortunately, 

gate departure time is difficult to estimate. If airlines are 

unable to provide gate departure times prior to actual 

departure, the only choices are scheduled departure time 

from the Official Airline Guide (OAG) or proposed 

departure time from filed flight-plans. These times, 

however, are not accurate. It is also difficult to estimate 

gate departure delay by observing airport state data. The 

study in Ref. 3 found the correlation between gate 

departure delay and metrics derived from airport state 

data such as, number of aircraft on the surface, airport 

departure rate, wind and visibility to be quite low. Like Ref. 3, this study also assumes that gate departure time is 

known.  

To group the 29 airports shown in Fig. 4 based on the values of taxi-out delay, TMI-from delay counts and 

number of commercial operations, and the other metrics listed in Table A-2 in the Appendix, the multiple-metric K-

Means classifier described in Ref. 10 is used. The K-Means method partitions data into specified number of groups 

such that the means associated with the groups are as widely separated as possible. Data elements are then labeled 

based on their closeness to the group means for reducing the variance. Group means are then re-computed based on 

the elements assigned to the groups. The process of assignment of elements to the groups and computation of group 

means is continued till convergence is achieved, that is, group means do not change with successive iterations. The 
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Table 3. Grouping based on number of commercial operations. 

 

Group ID Airports Min. Mean Std. Max. 

1 
DAL, SAT, AUS, SJC, MSY, SMF, OGG, ABQ, 

BUF, PBI, OMA, JAX, ONT, RSW, BUR, TUS 
57,648 90,430 18,572 116,414 

2 
PDX, ANC, CLE, TPA, CVG, RDU, BNA, IND, 

MCI, SJU, OAK, PIT 
127,723 153,339 22,103 190,108 

3 SFO 386,941 386,941 0 386,941 

 

Table 1. Grouping based on average taxi-out delays in minutes. 

 

Group ID Airports Min. Mean Std. Max. 

1 
ONT, MSY, BUR, IND, AUS, SJU, CVG, SJC, OAK, 

DAL, ANC, OGG 
1.5 1.9 0.2 2.1 

2 
RDU, PIT, CLE, SAT, TUS, ABQ, BNA, RSW, TPA, 

BUF, PBI, PDX, JAX, MCI, OMA, SMF 
2.2 2.5 0.3 3.2 

3 SFO 4.4 4.4 0.0 4.4 

 

Table 4. Grouping based on average taxi-out delay ratio in percentage. 

 

Group ID Airports Min.  Mean  Std. Max. 

1 AUS, OGG, IND, SJU, ANC, CVG 13.9 15.6 1.5 17.3 

2 
ONT, CLE, PIT, SMF, BNA, TPA, PDX, RSW, MSY, 

OAK, BUF, MCI, DAL, OMA, BUR, PBI, JAX, SJC 
17.9 19.9 1.3 22.0 

3 SFO, ABQ, SAT, RDU, TUS 23.3 24.2 1.5 26.8 

 

three groups obtained based on taxi-out delay are summarized in Table 1. The minimum, mean, standard deviation 

and maximum values for each group are listed in the last four columns. Airport codes in each group are arranged in 

the non-increasing order. For example, ONT has the maximum taxi-out delay in Group 1 and OGG has the 

minimum taxi-out delay in Group 1. The three groups can be considered to be low, medium and high taxi-out delay 

groups. Groups obtained with TMI-from delay counts and with number of commercial operations are summarized in 

Tables 2 and 3. Observe from Table 2 that Raleigh-Durham (RDU) has to comply with more departure restrictions 

compared to the other airports. San Francisco (SFO), which has the most taxi-out delays and number of commercial 

operations, is a member of Group 2 in Table 2 with TMI-from delay counts of 1,848 in the year 2011 (see Table A-2 

in the Appendix). Grouping based on taxi-out delay ratio and FAA level are summarized in Tables 4 and 5. 

Comparing Table 1 to Table 4, it is seen that ten airports (ONT, MSY, BUR, SJC, OAK, DAL RDU, SAT, TUS 

and ABQ) in Table 1 move one level higher in Table 4. These airports have higher average taxi-out delays compared 

to their nominal taxi-out times. Comparing Table 3 to Table 5, it is seen that 13 airports (ABQ, AUS, JAX, MSY, 

PBI, BUF, DAL, RSW, TUS, CVG, TPA, CLE and PIT) moved one level up in Table 5, one airport- SAT jumped 

Table 2. Grouping based on TMI-from delay counts. 

 

Group ID Airports Min. Mean Std. Max. 

1 
MSY, PDX, AUS, SAT, OMA, DAL, SMF, BUR, SJC, 

OAK, TUS, ABQ, ONT, SJU, ANC, OGG 
10 459 284 905 

2 
CVG, PIT, CLE, IND, SFO, BUF, TPA, MCI, BNA, 

PBI, JAX, RSW 
1,172 1,772 412 2,531 

3 RDU 3,557 3,557 0 3,557 
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Table 5. Grouping based on FAA level. 

 

Group ID Airports Min.  Mean  Std. Max. 

1 BUR, OGG, SJC, SJU, OMA, ONT, SMF 6 6.6 0.5 7 

2 
ABQ, AUS, BNA, IND, JAX, MCI, MSY, PBI, RDU, 

SFO, ANC, BUF, DAL, OAK, PDX, RSW, TUS 
8 8.6 0.5 9 

3 CVG, TPA, CLE, PIT, SAT 10 10.4 0.6 11 

 

Table 6. Grouping based on TMI-to weather delay counts. 

 

Group ID Airports Min.  Mean  Std. Max. 

1 CLE, IND, TPA, RDU, CVG, SAT 18 49 49 146 

2 DAL 300 300 0 300 

3 SFO 18,679 18,679 0 18,679 

 

Table 7. Grouping based on TMI-to 

volume delay counts. 

 

Group ID Airports Counts 

1 CLE 11 

2 SFO 24 

3 DAL 173 

 

two levels higher, and only two airports- SJU and SFO moved one level down. This reconfirms the finding that the 

number of operations is significantly correlated to the FAA pay level. Thus, FAA pay levels can be used in lieu of 

number of commercial operations. 

Finally, grouping based on TMI-to weather delay counts and TMI-to volume delay counts are given in Tables 6 

and 7, respectively. Only airports that delayed at least 10 aircraft in the year 2011 were considered for grouping in 

Tables 6 and 7. This reduced the set of 29 airports to just 8 based on TMI-to weather delay counts. San Francisco, 

the sole member of Group 3 in Table 6, is known to be severely affected by visibility. In 2011, it was responsible for 

causing over 18,000 aircraft bound for SFO to be delayed elsewhere. Only three airports- CLE, SFO and DAL in 

Table 7 caused aircraft bound for those airports to be delayed elsewhere due to traffic volume. It is reasonable to 

expect that departures would be affected when arrivals are impacted 

by weather and traffic volume. Wheels-off time estimates at these 

airports would have to consider weather and traffic volume 

conditions.  

The grouping results discussed above in Tables 1 through 7 

considered a single metric for classification. Groups can also be 

formed by first creating a composite ID for each airport based on 

single metric classifications and then placing all the airports with the 

same ID in a group. For example, CVG is a member of Group 1 based 

on taxi-out delay, Group 2 based on TMI-from delays and Group 2 

based on number of commercial operations, therefore its composite ID is (1, 2, 2). Similarly, the composite ID of 

IND is (1, 2, 2). Thus, CVG and IND belong to the same group based on their composite ID. This method is 

described in Ref. 10. Table 8 lists the airport grouping with composite ID constructed based on Tables 1, 2 and 3. 

Following this procedure, a member of group with Group ID (3, 3, 3) would be expected to benefit the most from 

wheels-off time estimation. Mean values of taxi-out delay, TMI-from delay counts and number of commercial 

operations for each group of airports are listed in the columns with headings- Mean 1, Mean 2 and Mean 3, 

respectively. Airport codes of airports that will receive ASSC for surface surveillance are shown in green boldface 

type and underlined. Airport code of San Jose, where LCGS is being tested, is shown in blue boldface type with “*” 

superscript. Table 8 shows that other than groups with IDs (2, 1, 1), (2, 2, 1) and (2, 3, 2), there is at least one airport 

in the group that will have a surveillance system. These airports should be initially targeted for developing and 

testing wheels-off time estimation methods. Track data (position as a function time) from surveillance can be used to 

determine gate, gate departure time, spot crossing time, ramp-area path and taxiway path needed for developing 

wheels-off time estimation methods. The estimated wheels-off time can be compared with the actual wheels-off time 

also using actual track data. The nine groups in Table 8 can be reduced further by merging smaller adjacent groups. 

Table 9 presents such a grouping by first giving preference to number of commercial operations and then to TMI-

from delay counts using the Group IDs. The first group consisting of Group IDS (1, 1, 1), (2, 1, 1) and (2, 2, 1) has 

MSY and SJC, two airports that will have surface surveillance systems. The second group of airports consisting of 

Group IDs (1, 1, 2), (2, 1, 2), (1, 2, 2), (2, 2, 2) and (2, 3, 2) has six airports- ANC, PDX, CVG, CLE, MCI and PIT 
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Table 9. Grouping based on preferences to number of commercial operations and TMI-from delay counts. 

 

Group ID Airports Mean 1  Mean 2 Mean 3 

1, 1, 1 AUS, OGG,  BUR, DAL, MSY, ONT, SJC
*
 1.9 468 97,406 

2, 1, 1 OMA, SMF, ABQ, SAT, TUS 2.4 503 90,671 

2, 2, 1 BUF, JAX, PBI, RSW 2.3 1,425 77,920 

1, 1, 2 ANC, SJU, OAK 1.8 221 151,643 

2, 1, 2 PDX 2.3 887 190,108 

1, 2, 2 CVG, IND 2 2,209 149,239 

2, 2, 2 BNA, CLE, MCI, PIT, TPA 2.5 1,859 150,431 

2, 3, 2 RDU 3.2 3,557 144,399 

3, 2, 3 SFO 4.4 1,848 386,941 

 

Table 8. Grouping based on taxi-out delay, TMI-from delay counts and number of commercial operations. 

 

Group ID Airports Mean 1  Mean 2 Mean 3 

1, 1, 1 AUS, OGG,  BUR, DAL, MSY, ONT, SJC
*
 1.9 468 97,406 

1, 1, 2 ANC, SJU, OAK 1.8 221 151,643 

1, 2, 2 CVG, IND 2.0 2,209 149,239 

2, 1, 1 OMA, SMF, ABQ, SAT, TUS 2.4 503 90,671 

2, 1, 2 PDX 2.3 887 190,108 

2, 2, 1 BUF, JAX, PBI, RSW 2.3 1,425 77,920 

2, 2, 2 BNA, CLE, MCI, PIT, TPA 2.5 1,859 150,431 

2, 3, 2 RDU 3.2 3,557 144,399 

3, 2, 3 SFO 4.4 1,848 386,941 

 

that will receive ASSC. One of these airports can be chosen to represent the second set. The third group consisting 

of Group ID (3, 2, 3) has SFO as its sole member, an airport that will have ASSC. Thus, SJC with LCGS, CLE with 

ASSC and SFO with ASSC are good choices for representing the three groups in Table 9.  

III. Wheels-off Time Estimation Method 

 In this section, the procedure for estimating wheel-off time at the 29 non-ASDE-X airports in Table 9 is 

described. It is assumed that airport geometry is available. Taxiways and runways are usually represented by 

polygons, where the locations of the vertices of polygons are specified by Cartesian coordinates with respect to a 

frame of reference. Locations of gates and spots are also specified with respect to the same frame of reference. Gate 

and spot locations and the polygons can be processed to create the node-link graph of the airport. An example of a 

node-link graph is shown in Fig. 5. Reference 11 describes the procedure for creating the node-link graph using 

taxiway and runway polygons. Any physical path for going from one location to another on the airport surface is 

represented by a sequence of nodes and links in this node-link graph. A location on the node-link graph is thus 

equivalent to a location on the physical airport surface. Since polygons, which are area elements, are represented by 

links, which are line elements, traversing along the links can be thought of as traversing along the taxiway 

centerline.  

 Given this node-link graph representation, the first step of the proposed wheels-off time prediction consists of 

representing the taxi clearance issued by the controller as a path in the node-link graph. Taxiway clearance is 

specified as an ordered list of taxiway segments that the aircraft is required to follow after pushback from the gate to 

runway. Mapping from taxiway segments to polygons and from polygons to links is used to determine the path in 

the node-link graph. In this early phase of development, aircraft position data acquired by ASDE-X during surface 

movement at Dallas-Fort Worth airport are derived from recorded SDSS logs to identify path from gate to runway in 

the node-link graph. Polygon containing the aircraft position is identified and then polygon to link mapping is used 

to identify the corresponding link. The sequence of links then determines the path.  
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Figure 5. Node-link graph of Dalla-Fort Worth airport. 

  

 The next step of the wheels-off time prediction consists of integrating the aircraft equations of motion along the 

path in the node-link graph. Starting with the gate location and the gate pushback time, this process generates a time 

history of positions along the path. This is the classical procedure of open-loop trajectory prediction. If this was the 

only aircraft moving on the surface, open-loop prediction would be reasonable. In reality however, aircraft moving 

on the surface interact with each other as the arrivals taxi-in towards their gates and departures taxi-out towards the 

runways. Aircraft have to stop at intersections to let other aircraft pass. Similarly, they have to often stop and wait 

for the active runway to be clear prior to crossing it. Separation rules also have to be followed. Departures also have 

to queue and wait prior to entering the runway so that there is adequate separation with respect to the prior aircraft 

that took off from the same runway. These rules have been programmed in the Surface Operation Simulator and 

Scheduler (SOSS) that is being developed at NASA Ames Research Center. SOSS uses kinematic models of 

different types of aircraft and the node-link graph to simulate surface traffic. While SOSS has been designed to work 

with schedulers for optimizing surface operations, SOSS has been used without a scheduler in this study. Routes 

from gate to runway, gate departure times and aircraft types are input to SOSS to simulate surface traffic for 

generating the results discussed in the section below.   

IV. Results 

The SOSS-model-based method, described in Section III, and a data-driven method are evaluated. The first 

method consists of using SOSS. This means that ramp-area, movement-area and queue-area speeds specified for 

each aircraft type are used in the prediction. The second method is a data-driven method in which average taxi-times 

derived from several days of actual data are added to the gate-out time or the spot crossing time for predictions. 

Nineteen hours, 5:00 am to 12:00 midnight, of each day of Dallas-Fort Worth surface traffic data derived from 

8/8/2011 to 8/13/2011 SDSS logs were processed to create inputs for the two methods and for validating the 

predictions. These days had good weather. There were a total of 5,208 arrivals and 5,256 departures. Table 10 lists 

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
A

ug
us

t 1
4,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

42
74

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. 



 

American Institute of Aeronautics and Astronautics 

 

10 

Table 10. Selected days. 

 

Date # Arrivals # Departures Day Flow 

8/8/2011 868 881 Monday South 

8/9/2011 870 860 Tuesday South 

8/10/2011 900 902 Wednesday South 

8/11/2011 897 915 Thursday South, North, South 

8/12/2011 888 892 Friday South 

8/13/2011 785 806 Saturday North, South 

 

 

 
 

Figure 6. Examples of queue-area entry nodes, hold 

nodes and departure nodes. 

the number of arrivals and 

departures, and the flow 

configuration on each day. 

DFW is operated in the south-

flow configuration 70% of the 

time.
3 

On the 11th, DFW 

switched from south-flow 

configuration to north-flow 

configuration at 2:00 p.m. local 

time and then back to south-

flow configuration at 5:00 p.m. 

DFW switched from north-flow 

configuration to south-flow configuration at 8:30 a.m. 

on the 13
th

.    

    The SOSS-based method and the data-driven method 

were used to generate estimates of queue-area entry 

time, runway entry time, wheels-off time, queue-area 

entry sequence and runway entry sequence. These times 

and sequences were compared against actual values 

derived from SDSS logs. Queue-area entry, runway 

entry and wheels-off time are defined using Fig. 6 as an 

example. Figure 6 shows the locations of queue-area 

entry nodes, hold nodes and departure nodes related to 

runway 17R. Observe that the queue-area entry nodes 

are placed such that the queue is set up in the correct 

order. For example, an aircraft on taxiway J could enter 

the queue-area earlier if the entry-node were placed 

closer to the intersection of taxiways J and Y than an 

aircraft that enters upstream on taxiway J (near the 

queue-entry node on taxiway J depicted in the figure) 

and still be behind the upstream aircraft. To maintain the 

correct order of entry into the queue, the queue-entry 

node is placed at the last entry node along the taxiway in 

the queue-area. In SOSS simulation, aircraft movement 

is simulated from gate to spot, from spot to runway hold 

node, from hold node to departure node and from departure node to wheels-off. For the example in Fig. 6, queues 

are formed along taxiways EF, EG and EH and taxiways J, K and L as aircraft wait to reach the runway hold nodes. 

SOSS computes spot crossing time, runway hold node arrival time, wait time at the hold node, departure node 

arrival time, wait time at the departure node and wheels-off time. Time from departure node to wheels-off is 

specified for different types of aircraft. Queue-entry time is determined as the time when SOSS simulated aircraft 

position is at or just prior to the queue-area entry node. Runway entry time is determined by adding the wait time at 

the hold node to the hold node arrival time. Actual hold node arrival time, runway entry time and wheels-off time 

are obtained by processing the track data obtained from SDSS logs with airport geometry data. Results obtained 

using the two methods are discussed below.  

SOSS-Model-Based 

 Figure 7 shows the histogram of the difference between the actual queue-area entrance time of the departures  

and the estimated queue-area entry times derived from SOSS simulation of 19 hours of 8/11/2011 Dallas-Fort Worth 

surface traffic consisting of 897 arrivals and 915 departures. August 11 was challenging because of airport 

configuration change from south-flow to north-flow and then back to south-flow. During the south-flow to north-

flow change, departures for 35L left their gates and queued in the queue-area and waited for a long time for 

departures and arrivals in the previous south-flow configuration to clear the runways. Queue-area entry time results 

shown in Fig. 7 were computed with respect to spot crossing time. This means that the SOSS simulation used spot 

position and time as initial conditions. The histogram in Fig. 7 shows the maximum error to be 21 minutes. It was 

determined that about 80% of the actual departures arrived within two-minutes early to one-minute window with 

respect to SOSS-based prediction of queue-area entry time. The two-minutes early to one-minute late window is 
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Figure 8. Cumulative absolute value of the queue-

area entry time estimation error. 

 
 

Figure 7. Queue-area entry time estimation error.  

 
 

Figure 9. Wheels-off time estimation error.  

 
 

Figure 10. Cumulative absolute value of wheels-

off time estimation error. 

used as the wheels-off time requirement in Ref. 12 for Precision Departure Capability for Call For Release. Later on 

results are presented with respect to gate departure time. Gate-based results were found to be worse than the spot-

based results. 

Figure 8 shows the cumulative absolute estimation error. For example, absolute value of queue-area entry time 

error is less than two-minutes for 87% and less than five-minutes for 97% of the departures. The main source of 

queue-area entry time error is the aircraft speeds assumed in SOSS. Actual maximum speeds in SDSS logs were 

found to be much higher in several instances compared to the nominal speeds assumed for the aircraft type in SOSS. 

The maximum speed difference was found to be 16 knots compared to SOSS speed of 15 knots. Average difference 

was found to be 8 knots for August 11 data. These findings suggest that SOSS nominal speeds can be better tuned to 

improve the estimates.   

Figure 9 shows the histogram of the difference between the actual wheels-off time of the flights and the 

estimated wheels-off time derived from SOSS simulation with reference to spot crossing. Maximum wheels-off time 

error was found to be 24 minutes. 47% of the departures were within the two-minutes early to one-minute late 

window and 59% were within the plus-minus two-minute window. 86% were within the plus-minus five-minute 

window. The cumulative absolute wheels-off time estimation error is given in Fig. 10. Comparing Fig. 9 to Fig. 7 

and Fig. 10 to Fig. 8, it may be seen that queue-area entry time estimation is much better than wheels-off time 

estimation. Part of the reason is that Dallas-Fort Worth has multiple queues in the queuing-area from which flights 

exit to enter the runway. Currently a simple logic of first-in first-out based on the queue-area entry time is being 

used to determine runway entry order. In the real operations, flights that need to comply with traffic flow 

management initiatives are given priority. Better prediction of runway entry time, which directly affects wheels-off 

time prediction, might require knowledge of flight priority.  
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Table 11. Compliance within two-minutes early to one-minute late. 

 

Date 
Spot-based Gate-based 

Queue (%) Runway (%) Wheels-off (%) Queue (%) Runway (%) Wheels-off (%) 

8 85.8 64.0 58.2 60.0 47.1 46.3 

9 83.7 53.7 50.3 63.3 44.5 40.9 

10 84.7 58.5 53.3 61.0 47.0 44.9 

11 80.1 52.6 47.0 59.5 42.4 38.6 

12 87.3 58.0 51.8 63.0 49.0 46.1 

13 84.6 60.4 54.2 62.4 51.4 47.5 

 

Table 12. No sequence error. 

 

Date 
Spot-based Gate-based 

Queue (%) Runway (%) Queue (%) Runway (%) 

8 70.4 62.0 49.5 47.1 

9 65.9 51.7 52.7 44.4 

10 72.9 59.1 48.8 45.0 

11 69.1 54.8 51.4 45.2 

12 72.2 62.6 53.6 47.9 

13 72.5 64.5 52.0 48.3 

 

Table 13. At most one sequence error. 

 

Date 
Spot-based Gate-based 

Queue (%) Runway (%) Queue (%) Runway (%) 

8 94.6 90.7 85.9 83.2 

9 93.3 83.5 85.5 77.2 

10 94.6 90.7 84.1 81.2 

11 93.0 86.3 85.9 80.0 

12 92.9 89.0 84.9 81.4 

13 95.2 91.4 85.0 81.8 

 

 Queue-area entry time, runway entry time and wheels-off time estimation errors were computed with spot and 

gate as references for the six days listed in Table 10. The two-minute early to one-minute late compliance results are 

summarized in Table 11.  

 The next set of results is for queue-area entry and runway entry sequences. To determine queue-area entry 

sequence for SOSS simulated aircraft and actual aircraft (based on SDSS track data), time of arrival at the queue 

entry nodes are sorted in increasing order for departures going to each runway. Sequence error is then computed as 

the difference between the actual aircraft and SOSS simulated aircraft positions in the sorted lists. This same 

procedure is repeated to determine runway entry sequence error. It should be noted that the runway entry sequence is 

same as the wheels-off sequence because only one aircraft is permitted to be on an active runway at a time. Table 12 

shows the percentages of departures without sequence errors on the six days. Table 13 shows percentages with at 

most one sequence error. This means that the actual aircraft was either in the correct sequence or was just ahead or 

just behind the SOSS predicted sequence. These results show that sequence errors are reduced when spot crossing 

time is used as a reference for SOSS-based predictions. Maximum spot-based queue-area and runway entry 
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Table 14. Compliance within two-minutes early to one-minute late. 

 

Date 
Spot-based Gate-based 

Queue (%) Wheels-off (%) Queue (%) Wheels-off (%) 

8 86.9 56.5 77.7 50.6 

9 86.2 50.0 77.7 48.1 

10 86.6 52.5 78.4 51.6 

11 81.7 54.6 74.5 52.1 

12 86.8 53.3 77.2 50.9 

13 86.1 57.4 77.8 55.6 

 

sequence errors were found to be 13 and 12, respectively, on August 8 data. The highest gate-based queue-area and 

runway entry sequence errors were found to be 12 and 12, respectively, also on August 8 data.   

 Results for the six days show that there is a significant loss of estimation accuracy from queue-area entry to 

runway entry. The loss is less from runway entry to wheels-off. Gate-based results are worse than spot-based results 

because of imprecise gate-out time information. Gate-out time is estimated based on the proximity of the SDSS 

reported position to the gate and SDSS reported speed, which indicates movement.           

SDSS-Based Average Taxi-Time 

This method assumes that historical taxi-time data from spot and gate to queue-area entry locations and wheels-

off are available. This method like the SOSS-based method, discussed in the previous section, does not assume that 

surface surveillance information is available in real-time. Historical information can be derived from the Out-Off-

On-In (OOOI) data provided by airlines and Automatic Dependent Surveillance (ADS) position reports provided by 

ADS equipped aircraft. To compute the spot and gate to queue-area and wheels-off taxi-times, six days of surface 

data were processed to identify the unique 226 spot-runway and 522 gate-runway combinations. Next, the number of 

departures associated with spot-runway and gate-runway were counted. Analysis showed that 25% of the spot-

runway combinations were used by a single aircraft, 36% were used by two or fewer aircraft and 61% were used by 

10 or fewer aircraft. The maximum number of times the spot-runway combination was used was 301 times. Of the 

522 gate-runway combinations, 31% were used by only one departure, 45% were used by two or fewer departures 

and 57% were used by 10 or fewer departures. The maximum number of times was 38. The six days of taxi-time 

data were averaged and assigned to each spot-runway and gate-runway pair. Queue-entry and wheels-off times were 

predicted by adding the spot crossing time or the gate departure time to the average taxi-times. The actual queue-

entry time and wheels-off time of the departures were compared to these predictions.  

Table 14 shows the percentages 

of departures that could be predicted 

within the two-minutes early to one-

minute late compliance window. 

This table also shows that spot-

based estimates are a bit better than 

gate-based estimates. Comparing the 

gate-based results in Table 11 to 

those in Table 14, it is seen that both 

queue-area entry time and wheels-

off time errors are less with this 

method. One of the reasons for 

better results is that the average taxi-

time is same as the actual taxi-time 

in instances of single departures associated with a spot-runway or gate-runway pair. The second reason is that the 

taxi-times based on actual track data include the influence of the actual path (not the idealized node-link path) and 

speed. The maximum queue-entry time and wheels-off time errors were 29 minutes and 26 minutes on August 8, 

respectively, when spot crossing time was used as the reference for estimation. Wheels-off time could be predicted 

within plus-minus five-minutes for at least 90% of the departures. This minimum value of 90% was obtained for 

August 11 data. Maximum queue-entry time error of 27 minutes and wheels-off time error of 24 minutes were 

obtained with gate-based predictions of August 8 departures. At a minimum, wheels-off time of 89% percent of 

departures in each of the six days could be predicted within plus-minus five-minutes. The percentage, 89%, was 

lowest for August 11 departures. August 13 gate-based wheels-off result of 55.6% in Table 14 are close to 59.2% 

obtained with the neural network in Ref. 3. Wheels-off time compliance of 53.5% of neural network predictions 

with respect to six days, August 7 through 12, of training data is comparable to the average compliance of 51.5% in 

Table 14.   

Queue-area entry and runway entry sequence error results are given in Tables 15 and 16. Maximum queue-area 

entry and runway entry sequence errors were obtained with August 8 data. For spot-based estimates, these were 14 

and 12 departures. For gate-based estimates, these errors were 11 and 10. The sequence errors for each of the six 

days were found to be very close to those obtained with the method described in the previous section. Comparing 

the results in Tables 15 and 16 to Tables 12 and 13, it is seen that the gate-based estimates are a bit better with the 

SDSS-based Average Taxi-time model compared to with the SOSS-based simulation method. These results suggest 

that the Average Taxi-Time model could be used for predictions at all airports without resorting to a more detailed 

simulation based approach. This method is also simple to implement, it does not require airport geometry and the 
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Table 16. At most one sequence error. 

 

Date 
Spot-based Gate-based 

Queue (%) Runway (%) Queue (%) Runway (%) 

8 96.0 91.4 90.3 87.1 

9 93.4 84.5 88.3 81.5 

10 95.6 90.6 91.9 85.5 

11 93.9 83.2 90.7 81.1 

12 94.1 89.5 90.5 86.9 

13 95.4 89.7 90.2 86.0 

 

Table 15. No sequence error. 

 

Date 
Spot-based Gate-based 

Queue (%) Runway (%) Queue (%) Runway (%) 

8 71.7 64.9 63.1 52.4 

9 70.0 54.2 60.0 51.0 

10 71.7 58.4 61.5 50.8 

11 68.3 52.2 63.0 47.3 

12 74.6 60.4 59.4 52.7 

13 73.4 58.6 61.8 51.9 

 

node-link models if gate departure time based wheels-off time and runway entry sequence predictions are desired. 

Gate-out and wheels-off data reported by airlines can be used to determine the average gate to wheels-off taxi-time 

needed by this model. The method is also computationally efficient because an addition operation is required for 

estimating wheels-off time and sorting is required to estimate the runway entry sequence. 

V. Conclusions and Future Work 

 In the first part of this paper, 29 airports were identified for development and testing of wheels-off estimation 

methods after removing airports with Airport Surface Detection Equipment Model-X (ASDE-X), small-hub airports 

and non-hub airports from the set of 77 major U. S. airports tracked in the Federal Aviation Administration’s 

Aviation System Performance Metrics database. These 29 airports were classified into three groups using a K-

Means procedure based on taxi-out delay, traffic management delay counts and number of commercial operations. 

Within these three groups, San Jose International, Cleveland-Hopkins International and San Francisco International 

are recommended for further development and validation of wheels-off time estimation methods. San Jose has the 

least number of commercial operations and San Francisco has the most. In the second part of the paper, a simulation 

based method and a data-driven method, which uses historical taxi-time information, for estimating queue-area entry 

time, runway entry time and wheels-off time were described. Queue-area entry time, runway entry time and wheels-

off time estimates were generated with reference to spot crossing time and gate departure time for six days of 

August 2011 Dallas-Fort Worth surface traffic data. These estimates were compared with the actual values 

determined by processing actual ASDE-X based aircraft position data. The main findings are as follows. Spot-based 

estimates are better compared to gate-based estimates. The data-driven method produces better gate-based estimates 

compared to the Surface Operation Simulator and Scheduler (SOSS) based method assuming model speeds. If 

surface surveillance data are unavailable, the data-driven method could be used for estimating queue-area entry time, 

runway entry time and wheels-off time. This method could also be used for estimating queue-area and runway entry 

sequence. These conclusions are expected to be equally applicable to airports such as San Jose, Cleveland and San 

Francisco. The next step consists of creating a geometry and node-link model for the San Jose airport with the data 

received from the City of San Jose. Several days of San Jose airport surface surveillance data acquired via the Low 

Cost Ground Surveillance (LCGS) system will be processed to create the parameters and inputs needed by the data-

driven model and by the SOSS-based simulation. The estimates generated by these methods will then be compared 

with LCGS derived values.   
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Appendix 

 The 77 major U. S. airports in the ASPM database are listed in Table. A-1. Table A-2 lists the numerical 

values of the eight metrics analyzed in the paper.  
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Table A-1. 77 ASPM airports. 

 

# Airport Code Airport Name Location 

1 ABQ Albuquerque International Sunport Albuquerque, New Mexico 
2 ANC Ted Stevens Anchorage International Anchorage, Alaska 
3 ATL Hartsfield - Jackson Atlanta International Atlanta, Georgia 
4 AUS Austin-Bergstrom International Austin, Texas 
5 BDL Bradley International Windsor Locks, Connecticut 
6 BHM Birmingham-Shuttlesworth International Birmingham, Alabama 
7 BNA Nashville International Nashville, Tennessee 
8 BOS General Edward Lawrence Logan International Boston, Massachusetts 
9 BUF Buffalo Niagara International Buffalo, New York 

10 BUR Bob Hope Burbank, California 
11 BWI Baltimore/Washington International Thurgood Marshall  Baltimore, Maryland 
12 CLE Cleveland-Hopkins International Cleveland, Ohio 
13 CLT Charlotte/Douglas International Charlotte, North Carolina 
14 CVG Cincinnati/Northern Kentucky International Covington, Kentucky 
15 DAL Dallas Love Field Dallas, Texas 
16 DAY James M Cox Dayton International Dayton, Ohio 
17 DCA Ronald Reagan Washington National Washington, District of Columbia 
18 DEN Denver International Denver, Colorado 
19 DFW Dallas/Fort Worth International Dallas-Fort Worth, Texas 
20 DTW Detroit Metropolitan Wayne County Detroit, Michigan 
21 EWR Newark Liberty International Newark, New Jersey 
22 FLL Fort Lauderdale/Hollywood International Fort Lauderdale, Florida 
23 GYY Gary/Chicago International Gary, Indiana 
24 HNL Honolulu International Honolulu, Hawaii 
25 HOU William P Hobby Houston, Texas 
26 HPN Westchester County White Plains, New York 
27 IAD Washington Dulles International Washington, District of Columbia 
28 IAH George Bush Intercontinental/Houston Houston, Texas 
29 IND Indianapolis International Indianapolis, Indiana 
30 ISP Long Island Mac Arthur New York, New York 
31 JAX Jacksonville International Jacksonville, Florida 
32 JFK John F Kennedy International New York, New York 
33 LAS Mc Carran International Las Vegas, Nevada 
34 LAX Los Angeles International Los Angeles, California 
35 LGA La Guardia New York, New York 
36 LGB Long Beach (Daugherty Field) Long Beach, California 
36 MCI Kansas City International Kansas City, Missouri 
38 MCO Orlando International Orlando, Florida 
39 MDW Chicago Midway International Chicago, Illinois 
40 MEM Memphis International Memphis, Tennessee 
41 MHT Manchester Manchester, New Hampshire 
42 MIA Miami International Miami, Florida 
43 MKE General Mitchell International Milwaukee, Wisconsin 
44 MSP Minneapolis-St Paul International/Wold-Chamberlain  Minneapolis, Minnesota 
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Table A-1. 77 ASPM airports (Contd.). 

 

# Airport Code Airport Name Location 

45 MSY Louis Armstrong New Orleans International New Orleans, Louisiana 
46 OAK Metropolitan Oakland International Oakland, California 
47 OGG Kahului Kahului, Hawaii 
48 OMA Eppley Airfield Omaha, Nebraska 
49 ONT Ontario International Ontario, California 
50 ORD Chicago O'Hare International Chicago, Illinois 
51 OXR Oxnard Oxnard, California 
52 PBI Palm Beach International West Palm Beach, Florida 
53 PDX Portland International Portland, Oregon 
54 PHL Philadelphia International Philadelphia, Pennsylvania 
55 PHX Phoenix Sky Harbor International Phoenix, Arizona 
56 PIT Pittsburgh International Pittsburgh, Pennsylvania 
57 PSP Palm Springs International Palm Springs, California 
58 PVD Theodore Francis Green State Providence, Rhode Island 
59 RDU Raleigh-Durham International Raleigh/Durham, North Carolina 
60 RFD Chicago/Rockford International Chicago/Rockford, Illinois 
61 RSW Southwest Florida International Fort Myers, Florida 
62 SAN San Diego International San Diego, California 
63 SAT San Antonio International San Antonio, Texas 
64 SDF Louisville International -Standiford Field Louisville, Kentucky 
65 SEA Seattle-Tacoma International Seattle, Washington 
66 SFO San Francisco International San Francisco, California 
67 SJC Norman Y. Mineta San Jose International San Jose, California 
68 SJU Luis Munoz Marin International San Juan, Puerto Rico 
69 SLC Salt Lake City International Salt Lake City, Utah 
70 SMF Sacramento International Sacramento, California 
71 SNA John Wayne-Orange County Santa Ana, California 
72 STL Lambert-St Louis International St Louis, Missouri 
73 SWF Stewart International Newburgh, New York 
74 TEB Teterboro Teterboro, New Jersey 
75 TPA Tampa International  Tampa, Florida 
76 TUS Tucson International Tucson, Arizona 
77 VNY Van Nuys Van Nuys, California 
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Table A-2. Airport metrics. 

 

# Airport 

Code 

Avg. 

Taxi-out 

Delay 

(min.) 

Avg. 

Taxi-out 

Delay 

Ratio (%) 

TMI-

from 

Delay 

Counts 

Itinerant 

Air-carrier 

and Air-taxi 

Ops. 

TMI-to 

Weather 

Delay 

Counts 

TMI-to 

Volume 

Delay 

Counts 

Enplanements Level 

 

1 ABQ 2.51 23.9 293 99,799 0 0 2,768,435 9 

2 ANC 1.66 14.0 132 186,698 9 2 2,354,987 8 

3 ATL 7.52 37.0 11,132 916,824 5,561 1,271 44,414,121 12 

4 AUS 1.97 17.3 858 113,111 0 0 4,436,661 9 

5 BDL 2.67 20.8 1,229 86,838 0 0 2,772,315 7 

6 BHM 2.34 19.8 363 58,694 0 0 1,429,282 8 

7 BNA 2.43 21.1 1,576 142,247 2 0 4,673,047 9 

8 BOS 5.2 28.7 5,734 355,607 8,964 80 14,180,730 10 

9 BUF 2.38 19.7 1,764 80,645 0 0 2,582,597 8 

10 BUR 2.07 18.9 412 67,726 0 0 2,144,915 7 

11 BWI 3.35 26.7 4,715 258,540 561 97 11,067,319 9 

12 CLE 2.74 21.9 2,203 179,382 146 11 4,401,033 10 

13 CLT 5.52 30.9 4,308 513,802 1,468 1,558 19,022,535 12 

14 CVG 1.93 13.9 2,531 157,367 20 1 3,422,466 11 

15 DAL 1.78 19.2 458 116,414 300 173 3,852,886 8 

16 DAY 2.57 19.8 821 48,217 0 0 1,247,333 8 

17 DCA 4.3 26.7 7,565 278,757 895 95 9,053,004 10 

18 DEN 3.71 26.5 3,302 630,969 1,702 7 25,667,499 12 

19 DFW 3.26 22.7 5,296 640,541 1,592 5 27,518,358 12 

20 DTW 3.25 18.5 4,149 436,534 997 303 15,716,865 11 

21 EWR 8.49 40.4 6,476 402,988 26,201 1,419 16,814,092 10 

22 FLL 4.16 26.2 4,397 227,061 25 20 11,332,466 9 

23 GYY 0.09 0.8 10 1,574 0 0 1,420 0 

24 HNL 1.96 15.5 29 206,446 0 0 8,689,699 11 

25 HOU 1.8 19.9 593 139,280 112 238 4,753,554 8 

26 HPN 2.39 18.8 1,946 64,601 59 171 972,385 7 

27 IAD 4.04 25.2 5,766 314,384 899 350 11,044,383 11 

28 IAH 4.84 29.3 4,031 516,708 797 166 19,306,660 12 

29 IND 2.02 16.6 1,886 141,111 49 0 3,670,396 9 

30 ISP 1.51 17.5 136 19,828 0 0 781,396 7 

31 JAX 2.22 18.0 1,191 77,315 0 0 2,700,514 9 

32 JFK 8.5 32.7 9,296 405,976 8,896 975 23,664,832 10 

33 LAS 3.79 26.6 2,700 484,194 416 131 19,872,617 11 

34 LAX 3.96 26.6 4,503 583,167 808 321 30,528,737 11 

35 LGA 11.67 47.3 10,716 364,140 19,845 3,195 11,989,227 10 

36 LGB 2.23 16.7 297 36,839 0 0 1,512,212 8 

36 MCI 2.21 19.6 1,603 136,398 0 0 5,011,000 9 

38 MCO 3.67 27.3 3,831 300,075 95 29 17,250,415 11 

39 MDW 2.99 27.1 1,855 209,789 661 42 9,134,576 8 

40 MEM 2.14 14.1 1,883 291,700 550 11 4,344,213 10 

41 MHT 2.03 18.2 1,145 51,376 0 0 1,342,308 5 

42 MIA 3.43 21.2 2,623 375,209 247 122 18,342,158 12 
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Table A-2. Airport metrics (Contd.). 

 

# Airport 

Code 

Avg. 

Taxi-out 

Delay 

(min.) 

Avg. 

Taxi-out 

Delay 

Ratio (%) 

TMI-

from 

Delay 

Counts 

Itinerant 

Air-carrier 

and Air-taxi 

Ops. 

TMI-to 

Weather 

Delay 

Counts 

TMI-to 

Volume 

Delay 

Counts 

Enplanements Level 

 

43 MKE 2.8 22.0 1,911 157,302 36 1 4,671,976 9 

44 MSP 3.72 22.5 3,441 418,739 1,341 8 15,895,653 11 

45 MSY 2.1 19.9 905 103,304 0 0 4,255,411 9 

46 OAK 1.82 19.8 339 131,981 2 1 4,550,526 8 

47 OGG 1.46 17.0 10 100,155 0 0 2,683,933 7 

48 OMA 2.21 18.9 625 78,769 0 0 2,047,055 6 

49 ONT 2.14 22.0 283 74,575 0 0 2,271,458 6 

50 ORD 5.6 33.8 13,077 871,099 25,195 249 31,892,301 12 

51 OXR 1.86 20.9 4 3,634 0 0 3 0 

52 PBI 2.35 18.6 1,573 79,399 0 1 2,877,158 9 

53 PDX 2.3 20.0 887 190,108 0 0 6,808,486 8 

54 PHL 6.56 33.8 9,960 433,307 13,653 1,726 14,883,180 12 

55 PHX 3.77 27.2 2,471 438,901 250 249 19,750,306 11 

56 PIT 2.9 21.8 2,284 127,723 6 0 4,070,614 10 

57 PSP 2.64 22.2 412 30,175 0 0 759,510 7 

58 PVD 2.44 20.3 1,920 57,194 0 0 1,920,699 8 

59 RDU 3.2 23.4 3,557 144,399 23 0 4,462,508 9 

60 RFD 0.1 0.9 27 12,208 0 0 102,559 7 

61 RSW 2.42 20.0 1,172 74,321 0 0 3,748,366 8 

62 SAN 3.17 24.5 1,959 174,034 111 16 8,465,683 7 

63 SAT 2.63 23.4 845 115,339 18 0 3,992,304 10 

64 SDF 1.58 13.3 1,263 136,804 48 9 1,650,707 9 

65 SEA 2.58 18.3 1,646 311,087 4 0 15,971,676 9 

66 SFO 4.4 26.8 1,848 386,941 18,679 24 20,056,568 9 

67 SJC 1.83 17.9 347 106,557 0 0 4,108,006 7 

68 SJU 1.96 14.8 193 136,249 0 0 3,983,130 7 

69 SLC 4.54 26.1 1,159 284,537 18 5 9,701,756 10 

70 SMF 2.19 21.2 457 101,800 3 0 4,370,895 6 

71 SNA 3.36 28.7 1,046 91,715 1 0 4,247,802 9 

72 STL 1.95 18.2 1,935 179,075 9 0 6,159,090 9 

73 SWF 1.3 9.9 195 13,215 0 0 209,966 0 

74 TEB 0.11 1.0 5,260 60,600 305 260 5,071 7 

75 TPA 2.42 20.3 1,628 166,407 41 8 8,174,194 11 

76 TUS 2.58 23.3 296 57,648 0 0 1,779,679 8 

77 VNY 0.12 1.1 134 10,687 3 0 1,018 8 
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